N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 – 2022 onwards) VISemester

Subject			HOURS P	ER WEEK	
Code	SUBJECT	Theory	Drawing	Practical	Total
		hours	hours	hours	hours
4020610	Industrial Engineering and Management	6	-	-	6
4020620	E Vehicle Technology & Policy	4	-	-	4
	Elective II The	eory			
4020631	Industrial Robotics and 3D Printing	5	-	-	
4020632	Refrigeration and Air Conditioning	5	-	-	5
4020633	Automobile Technology	5	-	-	
4020640	Solid Modelling Practical	-	-	6	6
	Elective II Prac	tical			
4020651	Industrial Robotics and 3D Printing Practical	-	-	5	
4020652	Refrigeration and Air Conditioning Practical	-	-	5	5
4020653	Automobile Technology Practical	-	-	5	
4020660	Project Work and Internship	-	-	6	6
		15	-	17	32
Extra / Co-Curricular activities					
Library	Library		-	1	
Physical E	ducation	-	-	-	2
	TOTAL				35

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING (PART TIME)

(Implemented from the Academic Year 2021 - 2022 onwards) <u>CURRICULUM OUTLINE</u>

SIXTH SEMESTER

Subject		HOURS PERWEEK				
Code	Subject	Theory	Tutorial / Drawing	Practical	Total	
4020420	Manufacturing Technology II	4	-	-	4	
4020430	Electrical Drives and Controls	4	-	-	4	
4020610	Industrial Engineering and Management	4	-	-	4	
4020460	Manufacturing Technology II Practical	-	-	3	3	
4020470	Electrical Drives and Control Practical	-	-	3	3	
	12	-	6	18		

TAMILNADU GOVERNMENT POLYTECHNIC COLLEGE, (Autonomous), MADURAI- 11 N - 20 SCHEME DIPLOMA IN MECHANICAL ENGINEERING (SANDWICH)

(Implemented from the Academic Year 2021 – 2022 onwards)

VISemester

Subject		HOURS PER WEEK			
Code	SUBJECT	Theory	Drawing	Practical	Total
Code		hours	hours	hours	hours
4020620	E Vehicle Technology & Policy #	4	-	-	4
4020440	Production and Quality Management	5			5
4020510	Design of Machine Elements	6	-	-	6
4020610	Industrial Engineering and Management	4	-	-	4
Elective II	Theory				
4020631	Industrial Robotics and 3D Printing	4	-	-	
4020632	Refrigeration and Air Conditioning	4	-	-	4
4020633	Automobile Technology	4	-	-	
4020540	Process Automation Practical	-	-	3	3
4020640	Solid Modelling Practical	-	-	3	3
Elective II	Practical				
4020651	Industrial Robotics and 3D Printing Practical	-	-	3	
4020652	Refrigeration and Air Conditioning Practical	-	-	3	3
4020653	Automobile Technology Practical	-	-	3	
		23	-	9	32
Extra / Co-	Curricular activities				1
Library		-	-	-	1
Physical Education			-	2	
TOTAL					

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020610
- Semester : VI
- Subject Title : Industrial Engineering and Management

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	ructions	Examination			
4020610	Hours	Hours /		Marks		
Industrial	/ Week Semester	Internal	End	Total	Duration	
Engineering and			Assessment	Semester		
Management				Examinations		
	6	96	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours
I	Plant Engineering and Plant Safety	18
II	Work Study, Method Study and WorkMeasurement	18
	Principles, Personnel Management and Organizatioal Behavior:	19
IV	Financial and Material Management	18
V	Engineering Ethics and Human Values	16
	Test and Model Exam	07
	Total	96

RATIONALE:

In the Indian Economy, Industries and Enterprises always find prominent place. After globalization, the students should be trained not only in manufacturing process but also in managing activities of industries. The knowledge about plant, safety, work study techniques, personnel management, financial management and engineering ethics and human values will definitely help the students as managers to suit the industries.

OBJECTIVES:

- To study the different types of layout.
- To study the safety aspects and its impacts on an organization.
- To study different work measurement techniques.
- To study engineering ethics and human values.
- To study the staff selection procedure and training of them.
- To study capital and resources of capital.
- To study inventory control system.
- To study about organization and it's behavior.

4020610 INDUSTRIAL ENGINEERING AND MANAGEMENT DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Time
Ι	Plant Engineering and Plant Safety	
	Chapter: 1.1: Plant Engineering : Plant - Selection of site of industry	9
	- Plant layout - Principles of a good layout - types - process, product	
	and fixed position - techniques to improve layout - Principles of	
	material handling equipment - Plantmaintenance - importance - Break	
	down maintenance, preventive maintenance and scheduled	
	maintenance.	
	Chapter: 1.2: Plant Safety: Importance - accident - causes and	9
	cost of an accident - accident proneness - prevention of accidents -	
	Industrial disputes - settlement of Industrial disputes - Collective	
	bargaining, conciliation, Mediation, arbitration - Indian Factories Act	
	1948 and its provisions related to health, welfare and safety.	

П	Work Study, Method Study and Work Measurement	
	Chapter: 2.1: Work Study: Productivity - Standard of living - method	4
	of improving productivity - Objectives - Importance of good working	
	conditions.	
	Chapter: 2.2: Method Study: Definition - Objectives - Selection of	6
	a job for method study - Basic procedure for conduct of method	
	study – Tools used – Operation process chart, Flow process chart,	
	two handed process chart, Man Machine chart, String diagram and	
	flow diagram.	
	Chapter: 2.3: Work Measurement: Definition - Basic procedure in	8
	making a time study - Employees rating factor - Application of time	
	allowances - Rest, Personal, Process, Special and Policy allowances -	
	Calculation of standard time - Problems - Basic concept of production	
	study – Techniques of work measurement - Ratio delay study,	
	Synthesis from standard data, analytical estimating and Pre determined	
	Motion Time System (PMTS).	
Ξ	Principles, Personnel Management and Organizational Behavior:	
	Chapter: 3.1: Principles of Management: Definition of management -	7
	Administration - Organization - F.W. Taylor's and Henry Fayol's	
	Principles of Management – Functions of Manager – Directing –	
	Leadership -Types of Leadership – Qualities of a good leader –	
	Motivation - Positive and negative motivation - Modern management	
	techniques- Management Information Systems – Strategic	
	management - SWOT Analysis - Business Process Re-engineering	
	(BPR) - Enterprises Resource Planning (ERP) - Activity Based	
	Management (ABM) - Global Perspective - Principles and brief	
	description.	
	Chapter: 3.2: Personnel Management: Responsibility of human	7
	resource management - Selection procedure - Training of workers	
	– Apprentice training – On the job training and vestibule school	
	training – Job evaluation and merit rating – objectives and	
	importance - wages and salary administration - Components of wages	
	 Wage fixation – Type of wage payment – Halsey's 50% plan, 	

	Rowan's plan and Emerson's efficiency plan - Problems.	
	Chapter: 3.3: Organizational behavior: Definition - organization	5
	- Types of Organization - Line, Staff, Taylor's Pure functional types -	
	Line and staff and committee type - Organizational Approaches,	
	individual behavior - causes - Environmental effect - Behavior and	
	Performance, Perception - organizational implications.	
IV	Financial and Material Management	
	Chapter: 4.1: Financial Management: Fixed and working capital -	9
	Resources of capital - shares preference and equity shares -	
	debentures - Type of debentures - Public deposits, Factory costing -	
	direct cost - indirect cost - Factory overhead - Selling price of a	
	product – Profit – Problems. Depreciation – Causes – Methods -	
	Straight line, sinking fund and percentage on diminishing value method	
	- Problems.	
	Chapter: 4.2: Material Management: Objectives of good stock control	9
	system - ABC analysis of inventory - Procurement and consumption	
	cycle - Minimum Stock, Lead Time, Reorder Level - Economic order	
	quantity - problems – supply chain management - Introduction –	
	Purchasing procedure - Store keeping - Bin card.	
V	Engineering Ethics and Human Values	
	Chapter: 5.1: Engineering Ethics: Definition - engineering ethics -	9
	personal and business ethics - duties and rights - engineering as a	
	profession - core qualities of professional practitioners - environment	
	and their impact - code of ethics - procedure for solving ethical conflicts	
	- ethical judgement - Kohiberg's stages of moral development - value	
	based ethics - engineers as managers, consultants and leaders -	
	environmental ethics - computer ethics - Intellectual Property Rights	
	(IPRs).	
	Chapter: 5.2: Human values : Morals - values - integrity - service	7
	learning - civic virtue - respect for others - living peacefully - caring -	
	sharing - honesty - courage - valuing time cooperation - commitments	
	- empathy - selfconfidence - character - stress management.	

Reference Books :

- Industrial Engineering and Management, O.P. Khanna, Revised Edition Publications (P) Ltd – 2004, 67/4 Madras House, Daryaganj, New Delhi-110002.
- Engineering Economics and Management, T.R. Banga& S.C. Sharma, McGraw Hill Editiion. 2 – 2001, New Delhi.
- 3. Herald Koontz and Heinz Weihrich, Essentials of Management, McGraw Hill Publishing Company, Singapore International Edition. Latest
- 4. Govindarajan .M, Natarajan. S, Senthilkumar V.V, Engineering ethics, prentice hall of India New Delhi, 2004.
- Management, Aglobal perspective, Heinz Weihrich, Harold Koontz, 10th Edition, McGraw Hill International Edition. Latest.
- Essentials of Management,4th Edition, Joseph L. Massie, Prentice Hall of India, New Delhi 2004.
- 7. S.Chandran, Organizational Behaviours, Vikas Publishing House Pvt. Ltd. Latest
- 8. M.Govindarajan and S.Natarajan, Principles of Management, Prentce Hall of India Pvt.Ltd. New Delhi. Latest.
- 9. Charles B. Fledderman, Engineering ethics, pearson prentice hall, New Jersey, 2004.

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020620
- Semester : VI
- Subject Title : E Vehicle Technology & Policy

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Inst	ructions		Examination		
4020620	Hours	Hours /		Marks		
E Vehicle Technology &	/ Week	Semester	Internal Assessment	End Semester Examinations	Total	Duration
Policy	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Environmental impact and history, Types of Electric vehicles	12
Π	Electric vehicle, Electrical Propulsion System	12
=	Energy Storages, Charging System, Effects and Impacts	11
IV	Electric Mobility Policy Frame Work	11
V	Tamilnadu E-Vehicle Policy 2019	11
	Test and Model Exam	7
	Total	64

RATIONALE:

The world is transitioning to cleaner mobility options with the aim at improving air quality and reducing dependency on fossil fuels. Electric Vehicles (EVs) have emerged a popular clean mobility choice to reduce emissions. EVs are powered fully or partially by batteries, they can help to reduce dependence on fossil fuels also air quality. Tamil Nadu is one of the most advanced states in India. Tamil Nadu has a highly developed industrial eco-system and is very strong in sectors like automobiles and auto-components. Many globally renowned companies have setup their manufacturing facilities in Tamil Nadu. Due the rapid depletion of fossil fuel and increase in fuel cost, environmental pollution, the shift to clean transport is necessary. This subject introduced by keeping all the above factors.

OBJECTIVES:

- To learn the environmental impact and history of Electric Vehicles.
- To understand the concept of Electric Vehicle and its types.
- To study the configurations of Electric Vehicles
- To acquire knowledge about Energy Storages, Charging System, Effects and Impacts
- To appreciate the Electric Mobility Policy Frame work India and EV Policy Tamil Nadu 2019.

4020620 E Vehicle Technology & Policy DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
	Environmental impact and history:	6
	Environmental impact of conventional vehicle - Air pollution - Petroleum	
	resources - History of Electric vehicles & Hybrid Electric Vehicles -	
	Conventional drive train system - Rear Wheel, Front Wheel and All	
	wheel - Parts of Drive train system	
	Types of Electric Vehicles:	6
	Introduction to Battery Electric Vehicle (BEV) - Definition BEV -	
	Necessity BEV - Different between BEV and Conventional Vehicle -	

	Advantages of BEV - Block diagram of BEV – Hybrid electric Vehicle	
	(HEV) - Plug-in Hybrid Electric Vehicle (PHEV) - Fuel Cell Electric	
	Vehicle (FCEV) - Description.	
II	Electric Vehicles:	6
	Configurations of Electric Vehicle - Performance of Electric Vehicles -	
	Tractive Effort in Normal Driving - energy consumption.	
	Hybrid Electric Vehicles: Concept of Hybrid electric drive trains -	
	Architecture of Hybrid Electric Drive trains - Series, Parallel and Series &	
	Parallel	
	Electric Propulsion Systems:	6
	Types of EV motors - DC motor drives- Permanent Magnetic Brush Less	
	DC Motor Drives (BLDC) - Principles, Construction and Working - Hub	
	motor Drive system – Merits and Demerits of DC motor drive, BLDC	
	motor drive	
	Energy Storages:	5
	Electrochemical Batteries – Battery Technologies – Construction and	
	working of Lead Acid Batteries, Nickel Based Batteries and Lithium	
	Based Batteries - Role of Battery Management System (BMS)- Battery	
	pack development Technology- Cell Series and Parallel connection to	
	develop battery pack.	
	Charging:	4
	Battery Charging techniques - Constant current and Constant voltage,	
	Trickle charging – Battery Swapping Techniques – DC charging –	
	Wireless charging – Maintenance of Battery pack - Latest development	
	in battery chemistry.	
	Effects and Impacts:	1
	Effects of EV – Impacts on Power grid – Impacts on Environment –	
	Impacts on Economy.	
IV	Electric Mobility Policy Frame Work	11
	Government of India Electric Mobility Policy Frame work - Global	
	Scenario of EV adoption - Electric mobility in India - National Electric	
	Mobility Mission Plan 2020 - Action led by Original Equipment	
	Manufacturers - Need of EV Policy - Advantage of EV Eco system -	

	Scope and Applicability of EV Policy – ARAI Standards for Electric	
	Vehicle - AIS 038, AIS 039 & AIS 123 - Key Performance Indicator -	
	Global impact - Trends and Future Developments	
V	Tamil Nadu E-Vehicle Policy 2019	11
	Tamil Nadu E-vehicle Policy 2019: Vehicle Population in Tamil Nadu -	
	Objectives of EV Policy - Policy Measures - Demand side incentives -	
	Supply side incentives to promote EV manufacturing - Revision of	
	Transport Regulation of EV - City building codes - Capacity Building and	
	Skilling - Charging structure - implementing agencies - Reasearch	
	&Development and Business Incubation - Recycling Ecosystem -	
	Battery and EVs	

Reference Books

- 1. Modern Electric, Hybrid Electric and Fuel Cell Vehicles, Mehrdad Ehsani, Yimin Gao, Sebastien E.Gay, Ali Emadi, CR Press, London, New York.
- Comparison of Electric and Conventional Vehicles in Indian Market: Total Cost of Ownership, Consumer Preference and Best Segment for Electric Vehicle (IJSR), Akshat Bansal, Akriti Agarwal
- A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development (MDPI), Fuad Un-Noor, Sanjeevikumar Padmanaban, Lucian Mihet-Popa, Mohammad Nurunnabi Mollah and Eklas Hossain.
- 4. Electric Vehicles: A future Projection CII October 2020 report.
- 5. Design and analysis of aluminum/air battery system for electric vehicles, Shaohua Yang, Harold Knickle, Elsevier.
- 6. Propelling Electric Vehicles in India, Technical study of Electric Vehicles and Charging Infrastructure
- ZERO EMISSION VEHICLES (ZEVs): TOWARDS A POLICY FRAMEWORK
 NTI Aayog.
- FASTER ADOPTION OF ELECTRIC VEHICLES IN INDIA: PERSPECTIVE OF CONSUMERS AND INDUSTRY, The Energy and Resources Institute, New Delhi.
- 9. India EV Story: Emerging Opportunities by Innovation Norway.
- 10.Automotive Industry Standards AIS 038, AIS 039 & AIS 123 Manual

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020631
- Semester : VI
- Subject Title : Industrial Robotics and 3D Printing

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject Instructions		Examination				
4020631	Houro	Hours /		Marks		
Industrial Robotics and 3D Printing	/ Week	Semester	Internal Assessment	End Semester Examinations	Total	Duration
	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours	
I	Fundamentals of Robot Technology	12	
II	Drive Systems, End Effecters, Sensors and Machine Vision System	12	
Ш	Robot Programming, Robot Applications in Maufacturing	12	
IV	Introduction and Design for Additive Manufacturing	18	
V	Additive Manufacturing Processes	19	
Test and Model Exam			
	Total	80	

RATIONALE:

Rapid industrialization and globalization needs industries to be more competitive and deliver cost effective quality products. This needs industries to implement flexible manufacturing systems where Robotic technology plays major role. Hence study of robotic technology is very essential.

3D printing is often utilized when manufacturers need to create a product accurately, quickly and at a low quantity. This has lead to 3D printers being brought in to prototype industrial robots, helping to aid the development of better, more efficient robots in the industrial sector.

OBJECTIVES:

- Understand fundamentals of robotics
- Acquire knowledge structure and elements of robot
- Gain knowledge on controller and various drives used in robotics
- Develop knowledge on role of sensors and vision system
- Acquire skill to program and control robot
- Understand to adopt robot to various industrial applications.
- To acquire the knowledge on 3D Printing and design principles for additive manufacturing
- To understand the principles of latest manufacturing processes in Additive manufacturing

4020631 Industrial Robotics and 3D Printing DETAILED SYLLABUS

Contents: Theory

Unit	Name Of The Topic	Hours
I	Fundamentals of Robot Technology	12
	Introduction - History of robot- Definitions- Basic configuration of	
	Robotics - Robot Components - Manipulator, End effecter,	
	Driving system, Controller and Sensors - Degrees of freedom -	
	Links and joints - Types of joints - Joint notation scheme - Pitch,	
	Yaw, Roll - Classification of robots - Work envelope and Work	
	Volume - Effect of structure on Control ,Work envelop and Work	
	volume- Introduction to PUMA robot- Robot controller -	

	Configuration - Four types of controls – Open loop and closed	
	loop controls - Speed of response and stability - Precision of	
	movements: Spatial resolutions, accuracy and repeatability.	
II	Drive Systems, End Effecters, Sensors and Machine Vision	12
	System	
	Pneumatic drives – Hydraulic drives – Mechanical drives –	
	Electrical drives - Stepper motors, DC Servo motors and AC	
	Servo motors- Applications and Comparisons of Drives. End	
	effecters - Grippers - Mechanical Grippers, Magnetic Grippers,	
	Vacuum Grippers- Selection and design considerations in robot	
	gripper- Requirements of Sensors - Position sensors: LVDT,	
	Resolvers, Optical encoders- Proximity sensors: Inductive,	
	Capacitive, Ultrasonic and Optical proximity sensors- Touch	
	Sensors - Range Sensors- Machine Vision System: Sensing &	
	Digitizing Image Data - Image Processing and Analysis -	
	Application	
III	Robot Programming, Robot Applications In Manufacturing	12
	Forward kinematics, Inverse kinematics and differences -	
	Forward kinematics and Reverse kinematics of manipulators with	
	Two and Three degrees of freedom - Derivations. Robot	
	programming -Lead through programming, Textual programming	
	- Teach Pendant for Robot system- Robot programming	
	languages - Motion commands, Sensor commands, End effecter	
	commands. Robot applications - Material handling-Spot welding -	
	Arc welding - Spray painting - Assembling - Finishing-AGV-RGV.	
IV	Introduction and Design for Additive Manufacturing	
	Introduction to Additive Manufacturing	9
	Additive Manufacturing – 3D Printing – Rapid prototyping –	
	Overview - Need - Additive manufacturing Vs CNC Machining -	
	Development of Additive Manufacturing Technology - Principle of	
	AM Process - Generalised Additive Manufacturing Process Chain	
	- Classification - Benefits – Direct and Indirect process,	
	Prototyping, Manufacturing and Tooling	

	Design for Additive Manufacturing	9
	Design tools: Data processing - CAD model preparation - STL file	
	- Part orientation and support structure generation - Model slicing	
	- Tool path generation. Design for Additive Manufacturing:	
	Concepts and objectives - AM unique capabilities - DFAM for part	
	quality improvement – strategies – Design Rules – Quality	
	aspects - Software for AM - MIMICS, etc.	
V	Additive Manufacturing Processes	
	Photo polymerization and Powder Bed Fusion Processes	7
	Photo polymerization: SLA - Photo curable materials - Process -	
	reaction rates - scan patterns - Advantages and Applications.	
	Powder Bed Fusion: SLS - Process description - powder fusion	
	mechanism - material feed system - Process Parameters -	
	Materials and Applications. Electron Beam Melting	
	Extrusion Based And Sheet Lamination Processes	5
	Extrusion Based System: FDM - Introduction - Basic Principle -	
	plotting and path control - Materials - Applications and Limitations	
	- Bio-extrusion. Sheet Lamination Process: LOM - Materials -	
	Gluing or Adhesive bonding - Thermal bonding - Ultrasonic AM.	
	Printing Processes And Beam Deposition Processes	7
	Droplet formation technologies - Continuous mode - Drop on	
	Demand mode - Three Dimensional Printing - Advantages - Bio-	
	plotter - Beam Deposition Process: LENS- Process description -	
	Material delivery - Process parameters – Materials –	
	Benefits.Applications of AM technologies in Automotive,	
	Manufacturing, Architectural, Healthcare, and Consumer products.	

Reference Books:

- Industrial Robotics Technology, Programming and Applications, P.Groover, MCGraw Hill, 2001
- 2. Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles and applications", Third edition, World Scientific Publishers, 2010.

- Ian Gibson, David W. Rosen, Brent Stucker "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing" Springer, 2010.
- 4. Robotics Control, Sensing, Vision and Intelligence, Fu.K.S.Gonzalz.R.C., and Lee C.S.G, McGraw-Hill Book Co., 1987
- 5. Robotics for Engineers, Yoram Koren, McGraw-Hill Book Co., 1992
- 6. Robotics and Image Processing, Janakiraman.P.A, Tata McGraw-Hill, 1995
- 7. Andreas Gebhardt "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing" Hanser Gardner Publication 2011.
- 8. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.
- 9. Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press, 2007.
- 10.Tom Page, "Design for Additive Manufacturing" LAP Lambert Academic Publishing, 2012.
- 11. Amit Bandyopadhyay, and Susmita Bose, "Additive Manufacturing", CRC Press.
- 12. John O Milewski., "Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewellery", Springer Series in Materials Science
- 13. Sabrie Soloman. "Additive Manufacturing: Advanced Manufacturing Technology in 3d Print Deposit"
- 14. David Ian Wimpenny and Pulak M Pandey, "Advances in 3D Printing and Additive Manufacturing Technologies"
- 15. Andreas Gebhardt, Hanser, "Understanding Additive Manufacturing"

Blank Page

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020632
- Semester : VI
- Subject Title : Refrigeration and Air-Conditioning

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
4020632	Hours / Week	Hours /		Marks		
Refrigeration and		Semester	Internal	End	Total	Duration
Air-Conditioning			Assessment	Semester	Total	
				Examinations		
	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours
I	Refrigeration System And Refrigeration Equipments	15
II	Vapour Compression Refrigeration System And Vapour Absorption Refrigeration System	15
	Refrigerant Flow Controls, Refrigerants And	15
111	Lubricants, Applications Of Refrigeration	
IV	Psychrometry And Comfort Air Conditioning	14
V	Air Conditioning Systems And Cooling Load Calculations	14
	Test and Model Exam	7
	TOTAL	80

RATIONALE:

Requirement of human comfort, maintenance of machines and preserving Perishables through air conditioning is very essential. Hence learning the study of refrigeration principles, refrigeration system, Concept of air-conditioning and methods of facilitates quality design of air conditioners are essential.

OBJECTIVES:

- Explain the working of open and closed air system of refrigeration.
- Describe the working and construction of compressors used for airconditioning
- Explain the vapour compression refrigeration system.
- Explain the vapour absorption refrigeration system.
- Compare the properties and applications of various refrigerants.
- \circ $\,$ Define the parameters used for air conditioning.
- To Use the psychometric chart.
- Estimate the cooling load for the given requirement.
- Explain the industrial application of refrigeration.

4020632 REFRIGERATION AND AIR-CONDITIONING DETAILLED SYLLABUS

Unit	Name Of The Topic	Hours
I	REFRIGERATION SYSTEM	15
	Thermodynamic state of a pure substances - modes of heat	
	transfer - laws of heat transfer - mechanisms of production of cold	
	- unit of refrigeration - types of refrigeration - reversed Carnot	
	cycle-C.O.P of heat engine-heat pump- refrigerating machine -	
	principle of working of open and closed air system of refrigeration -	
	Advantages and disadvantages - problems.	
	REFRIGERATION EQUIPMENTS	
	Compressor - principle of working and constructional details of	
	reciprocating and rotary compressors, hermetically and	
	semihermetically sealed compressors - condensers - principle of	
	working and constructional details of air cooled and water cooled	

	Condensers, evaporative condensers - advantages and	
	disadvantages - natural and forced draught cooling towers.	
	Evaporators - natural circulation and forced circulation type -	
	principle of working constructional details.	
II	VAPOUR COMPRESSION REFRIGERATION SYSTEM	15
	Principle of working of vapour compression system - analysis of	
	vapour compression cycle using T-s diagram and p-H diagram-	
	refrigerating effect - compression work - C.O.P - effect	
	ofsuperheating and under cooling - problems - effect of	
	evaporative	
	pressure - condenser pressure - liquid - vapour refrigeration	
	heatexchangers - advantages and disadvantages of superheating	
	and Under cooling - use of flash chamber and accumulator.	
	VAPOUR ABSORPTION REFRIGERATION SYSTEM	
	Simple absorption system - Electrolux system - Solar absorption	
	system - absorption system comparison with Mechanical	
	(Compression) refrigeration system.	
	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic	15
III	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator –	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12,	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics.	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve - thermostatic expansion valve - solenoid valve - evaporator pressure regulator - suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION Slow freezing – quick freezing – cold storage – frozen storage	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION Slow freezing – quick freezing – cold storage – frozen storage freeze drying – dairy refrigeration – ice cream cabinets – ice	15
111	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION Slow freezing – quick freezing – cold storage – frozen storage freeze drying – dairy refrigeration – ice cream cabinets – ice making – Water cooler, milk cooler, bottle cooler – frost free	15
	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION Slow freezing – quick freezing – cold storage – frozen storage freeze drying – dairy refrigeration – ice cream cabinets – ice making – Water cooler, milk cooler, bottle cooler – frost free refrigeration.	15
III	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve - thermostatic expansion valve - solenoid valve - evaporator pressure regulator - suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION Slow freezing – quick freezing – cold storage – frozen storage freeze drying – dairy refrigeration – ice cream cabinets – ice making – Water cooler, milk cooler, bottle cooler – frost free refrigeration. PSYCHROMETRY AND COMFORT AIR CONDITIONING	15
III	REFRIGERANT FLOW CONTROLS, REFRIGERANTS AND LUBRICANTS AND APPLICATION OF REFRIGERATION Capillary tube - automatic expansion valve – thermostatic expansion valve - solenoid valve - evaporator pressure regulator – suction pressure regulator - selection of a refrigerant - properties and Applications of following refrigerants SO2, CH4, F11, F12, F22, and NH3 – lubricants used in refrigeration and their applications, Cryogenics. APPLICATIONS OF REFRIGERATION Slow freezing – quick freezing – cold storage – frozen storage freeze drying – dairy refrigeration – ice cream cabinets – ice making – Water cooler, milk cooler, bottle cooler – frost free refrigeration. PSYCHROMETRY AND COMFORT AIR CONDITIONING Definitions of dry air, moist air, water vapour, Avogadro's law,	15

	dew point - humidity - specific and absolute - relative humidity -	
	degree of saturation - enthalpy of moist air - adiabatic saturation of	
	air by evaporation of water - psychometric chart and its uses -	
	psychometric processes – sensible heating and cooling –	
	humidifying and heating - dehumidifying and cooling - adiabatic	
	cooling with humidification - total heating or cooling processes -	
	sensible heat factor – by pass factor with simple problems –	
	Governing optimum effective temperature - comfort chart - design	
	consideration.	
V	AIR CONDITIONING SYSTEMS	14
	Equipment for air conditioning and insulation factors -	
	airpurification - temperature control - humidity control - dry and	
	wet filters - centrifugal dust collector - air washer humidifier -	
	dehumidifier - fans and blowers - grills and registers - summerand	
	winter air conditioning, window type air conditioner - split type air	
	conditioner system - properties of ideal insulator, types of	
	insulating materials - air distribution and duct systems - tools and	
	Installation, servicing and maintenance of R & AC systems.	
	COOLING LOAD CALCULATIONS	
	Different heat sources - conduction heat load - radiationLoad of	
	sun - occupants load - equipment load - infiltration air load-	
	miscellaneous heat sources - fresh air load - simple problems.	

Reference books:

- Refrigeration and air conditioning, P.L. Ballaney, Khanna Publishers, 2B,North Market, Naisarak, New Delhi 110 006.
- 2. Refrigeration and air conditioning, V.K. Jain,
- 3. Industrial Refrigeration Hand Book, Wilbert F. Steocker
- 4. A course in refrigeration and air conditioning, Domkundwar,
- 5. Principles of refrigeration, Dossat,
- Home refrigeration and air conditioning, Audels, Theo.Audel & Co. publisher, 199 Edn.49, West 23rd Street, New York. – 1998
- 7. Refrigeration and air conditioning, C.P Arora,
- 8. Cryogenic systems Randell Fd Barron.

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020633
- Semester : VI
- Subject Title : Automobile Technology

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	ructions		Examinatio	n	
	Hours	Hours /		Marks		
4020633 Automobile Technology	/ Week	Semester	Internal Assessment	End Semester Examinations	Total	Duration
	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours		
I	Automobile Engines	14		
II	Fuel Feed Systems and Alternativefuels	14		
- 111	Transmission and Power Trains	15		
IV	Automobile Chassis	15		
V	Electrical Equipment & Hybrid Electric Vehicles	15		
	Test and Model Exam	07		
Total				

RATIONALE:

Automobile is one of the key areas of development in India facilitated by Multinational Companies. As Automobile is the Major sources of employing man power a thorough knowledge on Automobile Engine construction and its functioning is required with due consideration on pollution control.

OBJECTIVES:

- Explain about the constructional details of an Automobile engine including cooling and lubrication system.
- Describe fuel feed systems for petrol and diesel engines with all devices involved in it.
- Explain the construction and functional features of the power transmission systems and various parts involved in it.
- Explain the functions of different types of steering, suspension and brake systems.
- Describe the different types of chassis and their functions.
- Familiarize electrical and electronic equipments used in automobile.
- To understand the emerging trends of electric vehicles, hybrid electric vehicles and solar vehicles.
- To know the automobile emissions and its effects on environment.

4020633 AUTOMOBILE TECHNOLOGY DETAILED SYLLABUS

Contents: Theory

Unit	Name Of The Topic	Hours
I	Automobile Engines	
	Basic Engine Components - Functions, types, materials and	14
	construction of -Cylinder block - Crankcase - oil pan - Cylinder	
	head - Gaskets - cylinder liners- Comparison of liners - Piston -	
	piston rings - types of compression rings and oil control rings -	
	piston pin - Connecting rod - methods of connecting piston and	
	Connecting rod - Crankshaft - flywheel - Cam shaft - Valve and	
	Valve mechanism - L-I-F-T.Cooling systems - purpose - types -	

	air and water cooling systems - merits and demerits -pump	
	assisted water cooling systems -components - water pump, fan -	
	thermostat - types - radiator -types -pressure cap - troubles in	
	cooling system. Lubrication systems - purpose - types of	
	lubricants - additives - Service rating of oil - types of lubricating	
	systems - Full pressure system - techniques of cylinder and piston	
	lubrication - oil filters - full flow and bypass filter systems -	
	Troubles in lubrication system.	
II	Fuel Feed Systems And Alternative fuels	
	Requirements of good fuel-Types of fuel feed systems- S.U.	12
	Electrical fuel pump – fuel filter – Air cleaners – types- petrol	
	injection -merits and demerits - DTSI - VTI - CCVTI - PGMFI -	
	MPFI system. Layout of diesel and petrol fuel feed system - single	
	acting fuel feed pump - fuel injection pumps - Construction and	
	working of distributor type pump - CRDI system - fuel injectors -	
	types – Single & Multi hole – pintle and pintaux - fuel filters –	
	primary and secondary filters.	
	Alcohol, Hydrogen, Compressed Natural Gas, Liquefied Petroleum	3
	Gas and Bio Diesel - Properties, Suitability, Merits and Demerits -	
	Engine Modifications	
	Transmission And Power Trains	
	General arrangement of power transmission system –	5
	Arrangement of front engine rear drive - rear engine rear drive -	
	front engine front drive - four wheel drive - applications - clutch -	
	function - Components - Types - Single plate ,multi plate and	
	diaphragm spring clutch - fluid coupling - Clutch troubles and their	
	causes.	
	Gear box - purpose - various resistance to motion - types of gear	3
	boxes -constant mesh and synchromesh-gear box troubles and	
	their causes.	
	Drive line - propeller shaft - Universal joint - Cross type only - slip	7
	joint - final drive - function - types of gear arrangement - straight	
	& spiral Bevel , Hypoid ,Worm and Worm Wheel - merits , demerits	

	and application - Hotch kiss drive - Torque tube drive - radius rod.	
	Differential - purpose - Construction and operation - Self locking	
	and non slip differential - Differential troubles and their Causes -	
	Semi floating, three quarter floating and full floating rear axles.	
IV	Automobile Chassis	
	Front axle – Types – Stub axle – Types – Steering system –	7
	Ackermann Principle of Steering - Wheel alignment - Factors -	
	Camber , Caster , King pin inclination , Toe in and Toe out on turns	
	- Steering linkages – Steering gears -Cam and double roller	
	,recirculating ball type , Rack and Pinion – Steering troubles and	
	causes - power steering - Necessity - types - Layout of any one	
	type - Collapsible Steering system.	
	Suspension system - Functions - Type of springs - Leaf , coil and	3
	Torsion bar- Front suspension systems - independent front	
	suspension -merits and demerits - types - rear end suspension -	
	Air suspension - shock absorber -purpose – telescopic type –	
	construction and working.	
	Brake system - functions - classification of brakes - drum brakes	3
	- leading shoe and trailing shoe - Self energizing action -	
	hydraulic brake - brake bleeding - Air assisted hydraulic brakes -	
	Air brake – layout , functions of each component and application	
	only - disc brakes - construction and working - comparison of disc	
	and drum type - brake troubles and their causes - anti lock Brake	
	system.	
	Wheels - types of wheels - brief description and applications -	2
	tyres - function- construction of tyres - cross and radial ply tyres -	
	comparison.	

V	Electrical Equipment & Hybrid Electric Vehicles	
	Battery - lead acid battery - Nickel alkaline battery - construction -	6
	battery rating - charging - testing - starting circuit - construction	
	and operation of starter motor – starting motor drives – over	
	running clutch and Bendix drive - construction and operation -	
	solenoid switch - Charging circuit - alternator construction and	
	operation - regulators - Dynamo.	
	Ignition system – Types – High tension magneto – electronic	5
	ignition - Ignition system troubles and remedies. Lighting system -	
	circuit - Head light - Aiming and adjustment - sealed beam head	
	lights - directional signal circuits - fluorescent lamp - Horn circuits	
	- Wind screen wiper.	
	Introduction: Concept and environmental importance of EVs, HEVs	4
	and solar vehicles. Electric vehicles: Layout, construction and	
	working. Hybrid electric vehicles: Types, layout, hybridization	
	factor, plug in hybrid electric vehicles, fuel efficiency analysis.	
	Challenges and future scope of EVs and HEVs. EMISSION	
	STANDARDS: Euro I, II, III and IV norms, Bharat Stage II, III, IV	
	norms. Motor Vehicle Act.	

Reference Books:

- 1. Automobile Engineering, G.B.S.Narang, Khanna Publishers, NewDelhi.
- AutomotiveMechanics,William H.crouse and Donald .L. Anglin, Tata McGraw- Hill Publishing CompanyLtd, NewDelhi.
- 3. The Automobile, Harbans Singh Reyat, S.Chand &Co Ltd, NewDelhi
- 4. Vehicle and Engine technology. Vol. I, HeinzHeisler, , ELBS
- 5. Automotive Mechanics, Joseph Heitner, East-west Press (P) Ltd, NewDelhi
- Internal Combustion engines, M.L.Mathur &R.P.Sharma, Dhanpat Rai & Sons,
- 7. Modern Electric, Hybrid Electric and Fuel Cell Vehicles, Mehrdad Ehsani, Yimin Gao, Sebastien E.Gay, Ali Emadi, CR Press, London, New York
- 8. Electric & hybrid Vehicle, A.K.babu, Khanna Publications, New delhi.

Blank Page

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020640
- Semester : VI
- Subject Title : Solid Modelling Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	ructions		Examinatio	n	
	Hours	Hours /		Marks		
4020640 Solid Modelling Practical	/ Week	Semester	Internal Assessment	End Semester Examinations	Total	Duration
	6	96	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE:

A Mechanical Engineering Diploma Engineer is expected to possess a thorough understanding of drawing, which includes clear visualization and proficiency in reading and interpreting a wide variety of production drawing. The market driven economy demands frequent changes in product design to suit the customer requirements. The introduction of this subject is to provide hands on experience in sketching and modeling of the industrial components using any one of the Computer Aided Design and Modelling packages. The aim of this subject is to help the student to attain the industry identified competency through practice in CAD software.

OBJECTIVES:

- Prepare 2D Drawing using sketcher or part modelling of any parametric CAD software.
- Generate 3D Solid models from 2D sketch or part modelling of any parametric CAD software.
- Prepare assembly of part models using assembly of any parametric CAD software.
- Generate orthographic views of 3D solid models/assemblies using drafting of any parametric software.
- Plot a drawing for given part model/assembly.

DETAILED SYLLABUS

Contents: Practical

Introduction

Parametric CAD software - sketch - elements - entities: line - circle - arc - ellipse polygon - text - dimensions - sketch tools - fillet - chamfer - offset - trim - extend - mirror - rotate - block. Partmodelling- reference planes - reference point reference axes - co-ordinate system - extrude - revolve - swept - helix and spiral lofts - dome - shell - draft - rib - wrap - intersect - holes - patterns. Assembly approaches - mate - coincident - sub assembly -rebuild - isolate. Drawing views -Save - Plot - model view - exploded view - projected view - section view - import export - Appearance - rendering.

Exercises

PART A: Draw the given 3D drawing using 3D modelling commands.

- 1. Model 1
- 2. Model 2
- 3. Model 3
- 4. Model 4
- 5. Model 5
- 6. Model 6

PART B: Draw the part models and assemble the components using 3D modelling.

1. Revolving Centre

- 2. Tail stock
- 3. Machine Vice
- 4. Crane hook
- 5. Petrol Engine Connecting Rod
- 6. Pipe Vice

AUTONOMOUS Examination

Note: All the exercises should be completed All the exercises should be given for examination, the students are permitted to select by lot or the question paper from DOTE should be followed. Record note book should be submitted during examination.

Two exercises will be given for examination by selecting one exercise in each PART. The printout of exercises of the student work should be submitted with answer paper and the same have to be evaluated as per the allocation.

SI. No.	Performance Indicator	Marks			
Part A - 3	3D Component Modelling				
1	Sketching	15			
2	3D Modelling	15			
Part B - Assemble Drawing Modelling					
3	Sketching / Part modelling	20			
4	Assembly	30			
5	Solid Model / Views	10			
6	Viva voce	10			
	Total	100			

DETAILLED ALLOCATION OF MARKS

Exercises

PART A: Draw the given 3D drawing using 3D modelling commands.

Model 5

Model 6

18

LIST OF EQUIPMENTS

- Personal computer : 30 Nos.
- Laser Printer : 1 No.
- Software : GUI System Software
 - : Modelling package Sufficient to the strength.

Blank Page

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020651
- Semester : VI
- Subject Title : Industrial Robotics and 3D Printing Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject Instructions		Examination				
4020651	Hours / Week	Hours /		Marks		
Industrial		Semester	Internal Assessment	End Semester	Total	Duration
Printing Practical				Examinations		
	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Objectives

- Study of Robot / Study of robot simulation software
- To study the components required.
- To study the techniques of programming for various industrial manufacturing applications.
- Prepare a record of work done.
- Acquire knowledge in the field of Additive Manufacturing
- Explain the various concepts of Solid Modelling
- Create STL files to manufacture components using 3D Printer

4020651 INDUSTRIAL ROBOTICS AND 3D PRINTING PRACTICAL DETAILED SYLLABUS

Contents:

3D Printing : Getting to know the User Interface of the Modelling software – Home Screen – Navigating the main Screen – Options Bar – Application Menu & Quick Access Toolbar – Describe the function of a sketch - Describe the various types of sketches. Create sketches of 3D models. Basic Modelling Considerations - Describe part creation within the design process. Add placed features to existing parts. Create complex shapes by sweeping or lofting profiles. Assemblies - Managing the assemblies - Assemble a mechanical piece of equipment using constraints. STL files - introduction - conversion of parts from other file formats to STL file - Additive Manufacturing – types of 3D Printers – orientation and positioning of parts producing 3D working models using 3D Printers.

Exercises

PART A - Robot Programming

- 1. Position recording using Cartesian co-ordinate system (No. of positions 9)
- 2. Position recording using Polar co-ordinate system (No. of positions 9)
- 3. Pick and place the objects No. of objects 6)
- 4. Pick and stack the objects (No. of objects 6)
- 5. Spray painting practice (Area 300mm x 300mm)
- 6. Spot welding practice (No. of spots 9)
- 7. Arc welding practice (Length of weld 50 mm)
- 8. Assembling practice (Minimum 3 Components)
- 9. Profile cutting practice (Complicated profile combination of lines and arcs)

PART B - 3D Printing

- 1. Create the model and produce the Gear Train in 3D printing.
- 2. Create the model and produce the Geneva Gear & Ratchet mechanism.

3. Create the model and produce the Slide-crank mechanism.

<u>Note:</u> Every student is asked to design and produce only one component of an assembly. After the completion of the product, individual parts are checked for its precision and matting in the assembly. Hence group exercises can be given. The models can be scaled according to the print area of the 3D Printer.

AUTONOMOUS Examination

Note: All the exercises should be completed All the exercises should be given for examination, the students are permitted to select by lot or the question paper from DOTE should be followed. Record note book should be submitted during examination.

Two exercises will be given for examination by selecting one exercise in each PART.

SI. No.	Performance Indicator				
Part A - F	Robot Programming				
1	Robot Program	20			
2	Simulate / Execution	30			
3	Result	10			
Part B - 3	Part B - 3D Prinitng				
4	CAD - Modelling	15			
5	3D Printing	15			
6	Viva voce	10			
Total					

DETAILLED ALLOCATION OF MARKS

LIST OF EQUIPMENTS (For 30 students)

Personal computer	:	10 Nos.
6 Axis Robot	:	1 No.
3D Printer	:	1 No.
Software	:	GUI System Software
	:	Modelling package / 3D Printer
		Sufficient to the strength.

Blank Page

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020652
- Semester : VI
- Subject Title : Refrigeration and Air-Conditioning Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Subject Instructions Examination			
4020652	Hours Hours /			Marks		
Refrigeration and Air-Conditioning Practical	/ Week	Semester	Internal Assessment	End Semester Examinations	Total	Duration
	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Identify the various tools used in R & AC
- Demonstrate the construction and working of window air conditioner
- Demonstrate the construction and working of split type air conditioner
- Set parameters for comfortable operation of an air conditioner.
- Determine the C.O.P of air conditioner.
- Determine the capacity of window air conditioner.
- Describe the wiring of refrigerator and coolers.
- Perform servicing on air conditioner.

Experiments:

PART A

- Determine the refrigerating effect, C.O.P and the compressor capacity of a open type system with any one expansion device. (Thermostatic expansion valve / Capillary tube / Automatic Expansion Valve)
- 2. Determine the C.O.P of sealed system by using electrical measurements.
- 3. Determine the capacity of a window air conditioner.
- 4. Determine the efficiency of a cooling tower.
- 5. Conduct Leak tests in a split air conditioning system, detect the failures and suggest the remedies. Conduct the Refrigerant Charge Test.
- 6. Conduct the flush test to remove the contaminants of refrigeration system and recharge.

PART- B

- 1. Study the various sizes of copper and steel tubing. To study the various tools used for operations.
- 2. Study and carry out the various operations on copper and steel tubing-Flaring, Swaging and Soldering methods used in R& A.C.
- Study the methods to set and adjust the following a) Thermostats, b) Low pressure and high pressure cut-outs c) Thermostatic expansion valve d) Automatic Expansion Valve.
- 4. Conduct the service to change refrigerant into service cylinder from storage cylinder.
- 5. Conduct the service to pump down the system and to purge air from the system.
- 6. Conduct the service to check the oil level in the compressor and trace the common faults in R & A.C units and their remedies.

AUTONOMOUS EXAMINATION

Note:

- All the experiments in both sections should be completed. Two experiments will be given for examination by selecting one from PART A and one from PART B.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- 3. All regular students appearing for first attempt should submit record notebook for the examination.
- 4. The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- 5. The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Detailled Allocation of Marks

PART A

Procedure	-	10
Formulae / Observation	-	20
Calculation / Result	-	20
PART B		
Description / Procedure	-	15
Tool handling	-	15
Conclusion / Report	-	10
Viva voce	-	10
TOTAL	-	100

LIST OF EQUIPMENTS (For 30 students)

WORKING MODELS OF THE FOLLOWING WITH ARRANGEMENTS FOR CONDUCTING TESTS

- 1. Refrigerator with test rig
- 2. Water cooler
- 3. Window A/C with test rig
- 4. Split A/C
- 5. Cooling tower

WORKING MODEL OF THE FOLLOWING TO CONDUCT EXPERIMENTS

- 1. Thermostat units
- 2. Cut off units
- 3. Thermostatic expansion valve unit
- 4. Automatic expansion valve unit
- 5. Sealed compressor with experimental setup

TOOLS:

- 1. Mechanics tool set
- 2. Tube cutter
- 3. Tube bender type
- 4. Tube bender spring
- 5. Swaging tool
- 6. Flaring block
- 7. Flaring nut
- 8. Pinching tool
- 9. Capillary tube testing gauge
- 10. Blow Lamp

SERVICE TOOLS:

- 1. Gas cylinder with receiver valve and key
- 2. Charging System
- 3. Blow lamp
- 4. Stem key
- 5. Spring remover
- 6. Service valve
- 7. 't' connector
- 8. High pressure gauge
- 9. Compound gauge
- 10. Leak detector
- 11. Soldering and Brazing kit.

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020653
- Semester : VI
- Subject Title : Automobile Technology Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	ructions	Examination			
4020653	Hours	Hours /		Marks		
Automobile Technology Practical	/ Week	Semester	Internal Assessment	End Semester Examinations	Total	Duration
	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Identify the various tools and their applications used in Automobile.
- Dismantle and assemble parts of petrol engine.
- Dismantle and assemble parts of diesel engine.
- Service AC fuel pump, oil pump and water pump.
- Dismantle and assemble fuel injection pump..
- Dismantle and assemble steering gear box.
- Testing and charging of batteries.
- Overhauling of starter motor, alternator.
- Troubleshoot the electrical circuits in automobile.

Exercises

PART-A

- Dismantling and assembling of four stroke petrol engine and identification of parts.
- 2. Removing camshaft, replacing timing gears, removing valves, lapping and adjusting valve clearance.
- 3. Removing, servicing and replacing of fuel pump, oil pump & water pump.
- 4. Removing, servicing & replacing MPFI system.
- 5. Dismantling and assembling of inline fuel injection pump / CRDI system.
- Test a battery with specific gravity test and charge the battery with constant amperage / voltage method.

PART-B

- 1. Removing and replacing of pressure plate and clutch plate, fingers adjustment
- Dismantling, inspecting and assembling of constant mesh gear box and find out the gear ratios.
- 3. Dismantling, assembling and adjusting of steering gear box.
- 4. Dismantling, overhauling and assembling of starter motor / alternator
- 5. Trace the automobile electrical system with respect to battery coil ignition system
- Trace the automobile electrical system with respect to (i) horn relay circuit, (ii)
 Wiper circuit & explain with neat circuit diagram.

AUTONOMOUS EXAMINATION

Note:

- 1. All the exercises in both sections should be completed. Two expercises will be given for examination by selecting one from PART A and one from PART B.
- All the exercises should be given in the question paper and students are allowed to select by a lot or question paper issued from the DOTE should be followed.
- 3. All regular students appearing for first attempt should submit record notebook for the examination.
- 4. The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- 5. The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Detailled Allocation of Marks

PART A

	Dismantling Procedure	-	20
	Tools handling methods	-	15
	Assembly / Report	-	10
PART	В		
	Dismantling Procedure	-	20
	Tools handling methods	-	15
	Assembly / Report	-	10
Viva v	осе	-	10
ΤΟΤΑ	L	-	100

LIST OF EQUIPMENTS (Sufficient for 30 students)

- 1. Automobile Mechanic's tools-Complete Set
- 2. Internal circlip plier, bearing puller
- 3. Feeler gauge to check valve clearance, hammer and accessories
- 4. Compressor to supply high pressure air to clean oil and water filters.
- 5. 4 stroke petrol engine with all accessories
- 6. 4 stroke Diesel engine with all accessories
- 7. Engine cylinder with liner and cylinder bore dial gauge
- 8. Oil pump and water pump.
- 9. MPFI.
- 10. Inline Fuel Injection Pump
- 11. CRDI
- 12. Injectors.
- 13. Clutch set arrangement with tools
- 14. Complete gear box with tools
- 15. Complete steering arrangement
- 16. Battery and charging set up.
- 17. Measuring instruments
- 18. Consumables

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

- Course Name : 1020 Diploma in Mechanical Engineering
- Subject Code : 4020660
- Semester : VI
- Subject Title : Project Work and Internship

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instr	uctions	Examination			
	Hours		Marks			
4020660 Project Work and Internship	/ Week	Semester	Internal Assessment	End Semester Examinations	Total	Duration
	6	96	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE: This subject 'Project Work and Internship" is the continuation of the previuos semester subjects. The students are to implement the detailed project plan, which they have prepared. This project are generally an integration of the various types of skills acquired during their course of study. Hence it is essential that students are given opportunity to develop and integrate the highly essential industry oriented competencies and skills. This subject build up greater confidence to face in the world of work.

OBJECTIVES:

- Implement the theoreticaland practical knowledge gained through the curriculuminto an application suitable for a real practicalworking environment preferablyin an industrialenvironment.
- Implement the planned activity as a team.
- Take appropriate decisions on collected information.

 Carryout cooperativelearning through synchronousguided discussionswithin theclassinkey dates,asynchronousdocumentsharinganddiscussions,as well as to prepare collaborative edition ofthefinalproject report.

Project Work and Internship:

The students of all the Diploma Courses have to do a Project Work as part of the Curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise. The Project work must be reviewed twice in the same semester. The project work is approved during the V semester by the properly constituted committee with guidelines.

a) Internal assessment mark for Project Work and Internship:

Project Review I	 10 marks
Project Review II	 10 marks
Attendance	 05 marks (Award of marks same as
	theory subject

pattern)

Total	 25 marks	

Proper record should be maintained for the two Project Reviews and preserved for one semester after the publication of Autonomous Exams results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

b) Allocation of Marks for Project Work and Internship in Autonomous Examinations:

Total	100* marks
Internship Report	20 marks
Viva Voce	30 marks
Report	25 marks
Demonstration/Presentation	25 marks

*Examination will be conducted for 100 marks and will be converted to 75 marks.

c) Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV / V semester during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year "Project Work & Internship" for 20 marks. The internship shall be undertaken in any industry / Government or Private certified agencies which are in social sector / Govt. Skill Centres / Institutions / Schemes.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual student during the Project Work and Internship Autonomous examination.

SANDWICH DIPLOMA COURSE - INDUSTRIAL TRAINING

4020480 Industrial Training I4020720 Industrial Training II

1. Introduction

The main objective of the sandwich Diploma course is to mould a well-rounded technician acclimated with industrial environment while being a student in the institution.

The Sandwich Diploma Course study is pursued by students, in 7 Semesters of 3 ½ years duration, the subjects of 3 years-Full Time Diploma Course being regrouped for academic convenience.

While in the 4th semester students under Industrial Training for 6 months (December through May). They also do course work in the institution for one day in a week, While in the 7th semester they undergo another spell of 6 months (June through November) Industrial training.

The Apprenticeship (Amendment) Act 1973 is followed in regulating the Industrial training procedure for Sandwich Course.

2. Attendance Certification

Every month students have to get their attendance certified by industrial supervisor in the prescribed form supplied to them. Students have also to put their signature on the form and submit it to the institution supervisor. Regularity in attendance and submission of report will be duly considered while awarding the Internal Assessment mark.

3. Training Reports

The students have to prepare two types of reports:

- Weekly report in the form of diary to be submitted to the concerned staff incharge of the institution. This will be reviewed while awarding Internal Assessment marks.
- Comprehensive report at the end of each spell which will be used for Autonomous Examination.

Industrial Training Diary

Students are required to maintain the record of day-to-day work done. Such record is called Industrial training Diary. Students have to write this report regularly. All days for the week should be accounted for clearly giving attendance particulars (Presence, absence, Leave, Holidays etc.). The concern Industrial supervisor is to check periodically these progress reports.

Comprehensive Training Report

In addition to the diary, students are required to submit a comprehensive report on training with details of the organisation where the training was undergone after attestation by the supervisors. The comprehensive report should be incorporating study of plant/product/process/construction along with intensive in-depth study on any one of the topics such as processes, methods, tooling, construction and equipment, highlighting aspects of quality, productivity and system. The comprehensive report should be completed in the last week of Industrial training. Any data, drawings etc. should be incorporated with the consent of the Organisation.

a. Scheme of Evaluation

Internal Assessment Marks

First Review (during 3 rd month) :	10 marks
Second Review (during 5 th month)	: 10 marks
Attendance *	: 05 marks
	(Awarded same as in Theory)
Total	: 25 marks

Autonomous Examination

Presentation about Industrial Training	: 20 marks
Comprehensive Training Report	: 30 marks
Viva-voce	: 25 marks
Total	: 75 marks

* For awarding marks to attendance, the Industrial Training attendance has to be considered.