TAMILNADU GOVERNMENT POLYTECHNIC COLLEGE, (AUTONOMOUS), MADURAI- 11 DIPLOMA IN MECHANICAL ENGINEERING

N - 20-SCHEME

(Implemented from the Academic year 2021-2022 onwards)

CURRICULUM OUTLINE

FOURTH SEMESTER (FULL TIME)

Subject		HOURS PER WEEK					
Codo	SUBJECT	Theory	Drawing	Practical	Total		
Code		hours	hours	hours	hours		
4020410	Fluid Mechanics and Fluid Power	5	-	-	5		
4020420	Manufacturing Technology II	5	-	-	5		
4020430	Electrical Drives and Controls	5	-	-	5		
4020440	Production and Quality Management	5	-	-	5		
4020450	Strength of Materials and Fluid Mechanics Practical	-	-	4	4		
4020460	Manufacturing Technology II Practical	-	-	4	4		
4020470	470 Electrical Drives and Control Practical		-	4	4		
		20		12	32		
Extra / Co-Curricular activities							
Library		-	-	-	1		
Physical E	ducation	-	-	-	2		
TOTAL							

TAMILNADU GOVERNMENT POLYTECHNIC COLLEGE, (AUTONOMOUS), MADURAI- 11 DIPLOMA IN MECHANICAL ENGINEERING (SANDWICH)

N - 20-SCHEME

(Implemented from the Academic year 2021-2022 onwards)

CURRICULUM OUTLINE

FOURTH SEMESTER (FULL TIME)

Cubicot		HOURS PER WEEK						
Code	SUBJECT	Theory hours	Drawing hours	Practical hours	Total hours			
4020420	Manufacturing Technology II	4	-	-	4			
4020460	Manufacturing Technology II Practical	-	-	3	3			
4020480	Industrial Training I	-	-	-	-			
		4	-	3	7			
Extra / Co-Curricular activities								
Library		-	-	-	-			
Physical E	ducation	-	-	-	-			
TOTAL								

TAMILNADU GOVERNMENT POLYTECHNIC COLLEGE, (AUTONOMOUS), MADURAI- 11 DIPLOMA IN MECHANICAL ENGINEERING (PART TIME)

N - 20-SCHEME

(Implemented from the Academic year 2021-2022 onwards)

CURRICULUM OUTLINE

FOURTH SEMESTER (PART TIME)

Subject		HOURS PER WEEK					
Code	Subject	Theory	Tutorial / Drawing	Practical	Total		
4020320	Manufacturing Technology - I	4	-	-	4		
4020340	Thermal Engineering - I	4	-	-	4		
40025	Engineering Graphics - II	-	4	-	4		
4020360	Manufacturing Technology - I Practical	-	-	3	3		
40002	Computer Application Practical	-	-	3	3		
	TOTAL	8	4	6	18		

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

Course Name	:	1020 Diploma in Mechanical Engineering
Subject Code	:	4020410
Semester	:	IV
Subject Title	:	Fluid Mechanics and Fluid Power

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject Instructions			Exam	nination		
4020410	lours /	Hours /	Marks			
Fluid Mechanics	Week	Semester	Internal Assessment	End Semester Examinations	Total	Duration
Power	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
I	Properties of Fluids & Fluid Pressure	12
II	Fluid Flow, Flow Through Pipes & Impact of Jet	17
	Hydraulic Turbines, Centrifugal Pumps & Reciprocating Pumps	16
IV	Hydraulic Systems	16
V	Pneumatic Systems	12
	Test and Model Exam	7
	Total	80

RATIONALE:

The purpose of this subject is to teach the students the fundamentals of engineering fluid mechanics in a very general manner so that they can understand the way that forces are produced and transmitted by fluids that are, first, essentially at rest and, second, in motion. This will allow them to apply the physical principles behind some of the most common applications of fluid mechanics in engineering.

OBJECTIVES:

- To study the basic fluid properties and types of flow;
- To understand the transmission of pressure in liquids and its application tohydraulics;
- To calculate hydrostatic forces on plane and curved submerged surfaces;
- To employ the concept of continuity of flow and use Bernoulli's equation tomeasure flow rate and velocity;
- To apply the momentum principle to liquids in jets and pipes.
- To understand the working of hydraulic machines like, turbines, pumps.
- To identify the various components of a Hydraulic & Pneumatic systems and select them for design of hydraulic and pneumatic circuits for Engineering applications.

4020410 FLUID MECHANICS AND FLUID POWER DETAILED SYLLABUS

Unit	Name of the Topics	Hours
I	PROPERTIES OF FLUIDS & FLUID PRESSURE	
	Chapter: 1.1: Properties of Fluids	4
	Fluid - definition-classification. Properties - density, specific gravity,	
	specific weight, specific volume, dynamic viscosity, kinematic viscosity,	
	surface tension, capillarity, vapour pressure and compressibility -	
	Problems	
	Chapter: 1.2: Fluid Pressure & Its Measurement Fluid Pressure - Hydrostatic law - Pressure head, Pascal's Law - proof -	8
	applications - Hydraulic press- Hydraulic jack. Concepts of absolute,	
	vacuum, gauge and atmospheric pressures.Pressure measurements -	
	Simple U tube manometers and differential manometers and their types	
	- Problems - Bourdon tube pressure gauge. Pressure sensor	
	technologies - classification only.Total Pressure, Centre of pressure on	
	immersed bodies (flat vertical., flat vertical) - Problems.	
	FLUID FLOW, FLOW THROUGH PIPES & IMPACT OF JET	
	Chapter: 2.1: Fluid Flow	6
	Types of Fluid flow - Laminar, turbulent, steady, unsteady, uniform,	
	non-uniform, rotational, irrotational. Continuity equation, Bernoulli's	
	theorem - assumptions- derivation - applications and limitations -	
	Problems.	
	Venturimeter - Construction - working principle, coefficient of discharge -	
	derivation for discharge. Orificemeter - Construction working principle,	
	coefficient of discharge- derivation for discharge. Problems. Pitots Tube	
	- Construction and working principle only.	6
	Chapter: 2.2: Flow through Pipes	
	Laws of fluid friction for Laminar and turbulent flow- Darcy's equation and	
	Chezy's equation for frictional losses - Problems. Minor Losses -	
	description. Hydraulic gradient line and Total energy line. Hydraulic	
	Power transmission through pipes - problems.	

		5
	Chapter: 2.3: Impact of Jet	
	Impact of jet on fixed vertical plate - Impact of jet on moving vertical flat	
	plates in the direction of jet - Impact of jet on a series of moving plates or	
	vanes - Problems on work done and efficiency.	
	HYDRAULIC TURBINES, CENTRIFUGAL PUMPS &	
	RECIPROCATING PUMPS	
	Chapter: 3.1: Hydraulic Turbines	4
	Classification of hydraulic turbines and their applications. Construction	
	and working principle of Pelton wheel, Francis and Kaplan turbine. Draft	
	tubes - types and construction, Concept of cavitation in turbines, Surge	
	tank and its need.	
	Chapter: 3.2: Centrifugal Pumps	6
	Construction - Principle of working. Types of casings and impellers.	
	Concepts of multistage. Priming and its methods. Manometric head, work	
	done, manometric, mechanical and overall efficiencies - problems	
	Chapter: 3.3: Reciprocating Pumps	6
	Construction, working principle and applications of single and double	
	acting reciprocating pumps. Discharge - Theoretical power required	
	coefficient of discharge – Problems	
	Concepts of slip – negative slip. Cavitation and separation. Use of air	
	vessel. Indicator diagram with effect of acceleration head and friction	
	head.	
IV	HYDRAULIC SYSTEMS	
	Chapter: 4.1: Introduction to Fluid power systems	4
	Fluid power systems - general layout - components of hydraulic &	
	Pneumatic systems. Practical applications of Fluid power systems.	
	Comparison - Advantages and limitations.	
	Chapter: 4.2: Components of Hydraulic systems	8
	Types, construction, working Principle and symbol of the following	
	components. Pump - vane, gear and piston pumps. Valves: Pressure	
	Control valves - pressure relief . valve, pressure reducing valve,	
	pressure unloading valve. Direction control valve - poppet valve, spool	

	valve, 3/2, 4/2 & 4/3 DC valves, sequencing valve. Flow control valve –	
	pressure compensated - non pressure compensated.Actuators - Linear	
	actuactors - single acting & double acting - rotory actuators - hydraulic	
	motors. Accessories - Intensifiers and Accumulators.	
	Chapter: 4.3: Hydraulic Circuits	4
	Double acting cylinder with Meter in, Meter out circuits, Pump unloading	
	cut, Bleed off circuit, sequencing circuit. Hydraulic circuits for milling	
	machine, shaping machine. Motion synchronisation circuit.	
V	PNEUMATIC SYSTEMS	
	Chapter: 5.1: Components of pneumatic systems	8
	Types, construction, working Principle and symbol of the following	
	components. Compressor – Reciprocating & Rotary Compressors. Valves. Pressure Control valves - pressure relief valve, pressure	
	regulating valves.Direction control valves - 3/2, 5/2 & 5/3 DC valves,	
	sequencing valve.Flow control valve - throttle valves - shuttle valves-	
	quick exhaust valves. Actuators - Linear actuactors - single acting &	
	double acting - rotary actuators - air motors. Accessories FRL unit.	
	Chapter: 5.2: Pneumatic Circuits	4
	Double acting cylinder with Meter in, Meter out circuits, speed control	
	circuit and sequencing circuit	

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

Course Name	:	1020 Diploma in Mechanical Engineering
Subject Code	:	4020420
Semester	:	IV
Subject Title	:	Manufacturing Technology - II

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructio	ons	Examination				
	Hours	Hours /		Marks			
4020420 Manufacturing	/ Week	Semester	Internal Assessment	End Semester Examinations	Total	Duration	
rechnology - II	5	80	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours				
I	I Theory of Metal Cutting, Drilling Machine & Abrasive					
	Process					
II	Reciprocating Machines and Broaching	15				
	Milling Machines and Gear Generating	14				
IV	Unconventional Machining Processes	14				
V	CNC Machine and CNC Programming	15				
Test and Model Exam						
	Total					

RATIONALE:

In the process of manufacturing we should possess adequate and through knowledge about the working of conventional as well as non-conventional machines. The topics included aim to inculcate in the students the skills of metal cutting, milling, grinding, CNC machines and other machining processes which are very much essential.

OBJECTIVES:

- Study the working of various machine tools: Planer, Shaper, Drilling and Slotter.
- Study the various work holding devices
- Study various types of milling cutter.
- Study the different types of grinders and grinding wheels.
- Study the broaching operation and their applications.
- Study the milling procedure for spur, helical and bevel gears.
- Study the various types of gear generating processes
- Study the use of non-conventional machining processes.
- Study the CNC machines working principle and its components.

4020420 MANUFACTURING TECHNOLOGY – II DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics					
Ι	THEORY OF METAL CUTTING, DRILLING MACHINE & ABRASIVE					
	PROCESS					
	Chapter: 1.1: Theory of metal cutting	4				
	Introduction - orthogonal cutting - oblique cutting - single point cutting					
	tool – nomenclature – types of chips – chip breakers – cutting tool					
	materials - properties - tool wears - factors affecting tool life - cutting					
	fluids - functions - properties of cutting fluid.					
	Chapter: 1.2: Drilling machines	4				
	Drills – flat drills – twist drills – nomenclature of twist drill – types of					
	drilling machines – bench type – floor type – radial type – gang drill –					
	multi spindle type - principle of operation in drilling - methods of holding					
	drill bit - drill chucks - socket and sleeve - drilling operation - reaming,					
	counter sinking, counter boring, spot facing, tapping and deep hole					
	drilling.					
	Chapter: 1.3: Abrasive process					
	Types and classification - specifications - rough grinding - pedestal	7				
	grinders - portable grinders – belt grinders. Precision grinding –					
	cylindrical grinder - centerless grinders - surface grinder - tool and					
	cutter grinder - planetary grinders - principles of operations - grinding					
	wheels - abrasives - natural and artificial diamond wheels - types of					
	bonds - grit, grade and structure of wheels - wheel shapes and sizes -					
	standard marking systems of grinding wheels - selection of grinding					
	wheel - mounting of grinding wheels - dressing and truing of wheels -					
	balancing of grinding wheels.					
	RECIPROCATING MACHINES					
	Chapter: 2.1: Planer	4				
	Introduction - description of double housing planner - specifications -					
	principles of operation – drives – quick return mechanism – feed					
	mechanism - operations.					

	Chapter: 2.2: Shaper	4
	Introduction - specifications - principles of operations - standard shaper	
	- quick return mechanism - crank and slotted link - hydraulic shaper -	
	feed mechanism - operations.	
	Chapter: 2.3: Slotter	3
	Introduction - specifications - method of operation - whitworth quick	
	return mechanism - feed mechanism - types of tools.	
	Chapter: 2.4: Broaching	4
	Types of broaching machine - horizontal, vertical and continuous	
	broaching - principles of operation - types of broaches - classification -	
	broach tool nomenclature - broaching operations.	
	MILLING MACHINES AND GEAR GENERATING PROCESSES	
	Chapter: 3.1: Milling machines	10
	Types - column and knee type, plain, vertical and universal milling	
	machines - principles of operation - specification of milling machines -	
	work holding devices - tool holding devices - arbor - stub arbor - spring	
	collet - adaptor. Milling cutters - cylindrical milling cutter - slitting cutter	
	- side milling cutter - angle milling cutter - T slot milling cutter - woodruff	
	milling cutter - fly cutter - nomenclature of cylindrical milling cutter.	
	Milling operations - straddle milling - gang milling - vertical milling	
	attachment. Indexing plate - differential indexing - simple indexing and	
	compound indexing - simple problems.	
	Chapter: 3.2: Generating processes	4
	Gear shaper - gear hobbing - principle of operations only. Gear finishing	
	processes - burnishing - shaving - grinding and lapping - gear	
	materials.	
IV	UNCONVENTIONAL MACHINING PROCESSES	
	Chapter: 4.1: Mechanical energy based process	5
	Introduction - classification - process selection - advantages -	
	limitations - demerits of conventional processes. Mechanical energy	
	based process: Introduction - abrasive jet machining - metal removal	
	rate process parameters - water jet machining - hydrodynamic jet	
	machining - ultrasonic machining process - advantages - disadvantages	

	- applications - compare ultrasonic machining with traditional abrasive	
		-
	Chapter: 4.2: Electrical energy based processes	5
	Introduction - electrical discharge machine (EDM) - flushing system in	
	EDM - tool (electrode) materials - tool wear - metal removal rate and	
	surface finish - factors affecting the metal removal rate - advantages -	
	disadvantages - applications - wire cut EDM , features of wire cut EDM	
	- difference between EDM and wire cut EDM.	
	Chapter: 4.3: Thermal energy based processes	4
	Introduction - electron beam machining - laser beam machining - lasing	
	materials - machining applications of laser - plasma arc machining - gases used in plasma arc machining - types of plasma arc torches -	
V	CNC MACHINE AND ITS COMPONENTS	
	Chapter: 5.1: CNC machines	5
	Numerical control - definition - working principle of a CNC system -	
	features of CNC machines - advantages of CNC machines - difference	
	between NC and CNC – construction and working principle of turning	
	centre - construction and working principle of machining centre -	
	machine axes conventions turning centre and machining centre - co-	
	ordinate measuring machine - construction and working principle.	
	Chapter: 5.2: Components of CNC machine	4
	Slide ways - requirement - types - friction slide ways and anti-friction	
	slide ways - linear motion bearing - recirculation ball screw - ATC - tool	
	magazine - feedback devices - linear and rotary transducers - encoders	
	- in process probing - tool material - tool inserts.	
	Chapter: 5.3: CNC Programming	6
	Introduction - Cartesian coordinate system - Polar coordinate system -	
	Absolute and incremental positioning - Purpose of G and M codes. Basic	
	codes – basic CNC program. CNC turning program using linear	
	interpolation and circular interpolation. Machine control panel - Homing	
	position – Offset setting – Auto. CNC milling program using linear	
	interpolation and circular interpolation. Compensation - Machine control	
	panel - Home position - Work offset setting procedure - Tool offset	

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

Course Name	:	1020 Diploma in Mechanical Engineering
Subject Code	:	4020430
Semester	:	IV
Subject Title	:	Electrical Drives and Control

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructio	ons	Examination			
4020430	Hours	Hours /		Marks		
Electrical Drives andControl	rives / Week ol	Semester	Internal Assessment	End Semester Examinations	Total	Duration
	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours			
I	Dc Circuits and Dc Machines	15			
II	Ac Circuits and Ac Machines	15			
	Special Machines & Drives	15			
IV	Power Supplies, Control Elements and Electrical Safety	14			
V	Display Devices, Logic Gates and PLC	14			
Test and Model Exam					
Total					

RATIONALE:

The automation is being the order of the day to improve the production with high quality consciousness. Such automation involves electrically operated switches, sensors controlled through electrically driven motors and actuators. The subject aims in introducing the basic electrical DC and AC circuits and motors and also focuses on the various special control devices like stepper, servo drives and its controlling elements.

OBJECTIVES:

- Explore fundamental electric circuit laws.
- Explain the working principle of DC and AC Electrical machines.
- Identify the effective uses of drives of Electrical machines.
- Analyze the various power supply circuits.
- Select the field controlled elements.
- Explain the construction and working of Transformer.
- Compare the different types of Logic gates.
- Appreciate the safety practices followed in Electrical system.
- Compare the use of servo motors and stepper motors in electrical drivingsystem
- Identify PLC Input outputs.
- Identify the use of Control elements.

4020430-ELECTRICAL DRIVES AND CONTROL DETAILED SYLLABUS

Co	ontents: Theory	
Unit	Name of the Topics	Hours
I	DC CIRCUITS AND DC MACHINES	
	Chapter: 1.1:	7
	Definition- Electric Current, Voltage and Resistance -Ohm's law and	
	Kirchoff's law. Resistance in series, parallel and series parallel -	
	simple problems - Electromagnetism (definitions only) - Magnetic	
	flux, Fluxdensity, Magnetic field intensity, MMF, Permeability,	
	Reluctance, Faraday's law of Electromagnetic induction, Electrical	
	and Mechanical units.	

	Chapter: 1.2:	
	DC Generators - Construction, Principle of operation and	
	Applications. DC Motors: - Construction, Principle of operation and	8
	Applications.	
	Necessity of starters: Three point, four point starters.	
II	AC CIRCUITS AND AC MACHINES	
	Chapter: 2.1:	7
	Fundamentals of AC voltage, and current – Peak, Average, RMS	
	value of sine wave, frequency, time period, amplitude, power and	
	power factor (definition only).	
	Transformer: Principle of operation and construction - EMF equation	
	- Losses in Transformer - Efficiency - Applications.	
	Alternator construction - Principle of operation and Applications.	
	Chapter: 2.2:	8
	AC machine: AC Motors- Principle of operation of Single Phase,	
	Capacitor Start induction motor - universal motor - Applications-	
	Three Phase Induction Motors – Squirrel Cage and Slip ring	
	Induction motors (Construction and Working Principle only) -	
	Applications – Speed control of 3Φ Induction Motor - DOL and	
	star/delta starter.	
III	SPECIAL MACHINES & DRIVES	
	Chapter: 3.1:	7
	PMDC Motor, Stepper motor- Construction and Working Principle	
	and Applications - Servo motor - types.	
	Permanent Magnet Servo motor Construction and Applications.	
	Brushless Servo motor - Construction and Applications.	
	Chapter: 3.2:	8
	Industrial drives- types, Group drive, Individual drive, Multi motor	
	drive. Block diagram of Variable Frequency Drive (VFD).	
	Stepper motor Drive: Single stepping and Half stepping Servo drives.	
	DC Servo drive, AC Servo drive and BLDC Servo drive.	

IV	POWER SUPPLIES, CONTROL ELEMENTS AND ELECTRICAL	
	SAFETY	
	Chapter: 4.1:	5
	Rectifiers - Half wave, Full wave and Bridge rectifiers - Necessityof	
	Filters- Regulated Power Supplies: IC Voltage Regulators.Batteries -	
	Working, Constructions, Maintenances and Trouble shooting.	
	Chapter: 4.2:	5
	Fuses - Selection of Fuse - Necessity of Fuse- Fuse switch units.	
	Sensors: Photo electric sensor, Inductive Proximity sensors,	
	Temperature sensors. Contactors - usage - Necessity of Contactor-	
	Solenoid type Contactor.	
	Chapter: 4.3:	4
	Circuit breakers - Miniature Circuit Breaker (MCB), Earth	
	Leakage Circuit Breaker (ELCB). Electrical Safety: - Importance of	
	Earthing - Electric shock: First aid, Precautions - Causes of Accident	
	and their Preventive measures.	
V	DISPLAY DEVICES, LOGIC GATES AND PLC	
	Chapter: 5.1:	4
	Display devices - LED, 7 segments LED, LCD, applications.	
	Chapter: 5.2:	5
	Logic gates: Positive and Negative Logic, Definition, Symbol and	
	truth table.Boolean expression for OR, AND, NOT, NOR, NAND,	
	EXOR AND EXNOR gates. Universal Logic Gates: NAND, and NOR.	
	Chapter: 5.3:	5
	Features of PLC - PLC Block diagram - PLC scan. Fixed and	
	Modular PLC. Ladder logic - NO, NC contacts - Coils - AND logic,	
	OR logic.	

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

Course Name	:	1020 Diploma in Mechanical Engineering
Subject Code	:	4020440
Semester	:	IV
Subject Title	:	Production and Quality Management

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
4020440	Hours			Marks		
Production and Quality Management	/ Week	Semester	Internal Assessment	End Semester Examinations	Total	Duration
	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours			
I	Process Planning and Selection	15			
II	Basic concepts of Total Quality Management	14			
	TQM Tools	14			
IV	Statistical Fundamentals & Charts	15			
V	V Lean Manufacturing Concepts				
	Test and Model Exam	07			
	Total	80			

RATIONALE:

In the product manufacturing the process selection and planning are important. Quality and customer satisfaction in every product and every activity is the order of the day. As there is a shift from quality control to quality management in all activities, the concept Total Quality Management and the pillars of TQM are to be given to Engineers, who are designing products and production systems.

OBJECTIVES:

- Understand the process planning.
- Study the process selection.
- Define quality and appreciate its signature.
- Explain the concept of TQM.
- Appreciate the use of principles of TQM to meet customer satisfaction.
- Solve problem using the Quality control tools.
- Apply Brainstorming and quality circle to solve problems.
- Use PDCA cycle for continuous improvement.
- Appreciate the benefits of implementing 5S concepts.
- Collect, classify and present the data.
- Determine the process capability of a manufacturing process.
- Practice on management planning tools.
- Use Bench Mark and JIT concepts.

4020440 PRODUCTION AND QUALITY MANAGEMENTDETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topic	Hours
I	Process Planning And Selection	
	Chapter: 1.1:	3
	Production: Types of Production – Mass production, batch production	
	and job order production	
	Chapter: 1.2:	6
	Process Planning: Introduction - concept - Information required to do	
	processplanning – factors affecting process planning – process	

	planningprocedure - Make (or) Buy decision using Break Even Analysis -	
	simple problems. Manual process planning - Introduction ofAutomated	
	process planning and generator process planning -Advantage of	
	computer aided process planning - Principle of linebalancing - need for	
	line balancing - Value Engineering -Definition - cost control Vs cost	
	reduction – value analysis when todo – steps information needed –	
	selection of product.	
	Chapter: 1.3:	6
	Process Selection: Process selection - technological choice - specific	
	componentchoice - Process flow choice - Factors affecting process	
	selection- machine capacity - analysis of machine capacity - process	
	andequipment selection procedure - Determination of man, machineand	
	material requirements - simple problems - selection ofmaterial - jigs -	
	fixtures etc Factors influencing choice of machinery - selection of	
	machinery - simple problems - Preparation of operation planning sheet	
	for simple components.	
	Chapter: 2.1: Basic Concepts Of Total Quality Management	14
	Quality-Definitions - Dimensions of quality - Brainstorming and	
	itsobjectives - Introduction to TQM - Characteristics - Basic concepts -	
	Elements - Pillars - Principles - Obstacles to TQMimplementation -	
	Potential benefits of TQM - Quality council - duties - Responsibilities -	
	Quality statements – Vision – Mission – Quality policy statements –	
	Strategic planning – Seven steps tostrategic planning – Deming	
	philosophy - Customer - Input / Output process model - Juran Trilogy -	
	PDCA (Deming Wheel) cycle.	
	TQM Tools	14
	Chapter: 3.1:	
	Seven tools of quality control (Q 7 tools): Check sheet - Types of	
	check sheet - Histogram - Cause and effect diagram - Pareto diagram -	
	Stratification Analysis - Scatter diagram-Graph/run charts - Control	
	charts - Construction of above diagrams.Quality circle - concept of	
	quality circle - Organisation of Qualitycircle and objectives of Quality	
	circle. Zero Defect Concepts.	

Chapter: 3.2:	
Management Planning Tools (M 7 Tools)	
Affinity diagram - Radar Diagram - Inter Relationship diagram (Inter	
Relationship diagram) - Tree diagram - Prioritization matrix - Matrix	
diagram - Decision tree - Arrow diagram - Matrix data analysis diagram	
- Construction of above diagrams.	
IV Statistical Fundamentals And Control Charts	
Chapter: 4.1:	7
Types of Data – Collection of Data – Classification of Data – Tabular	
presentation of Data - Graphical representation of a frequency	
distribution - Comparison of Frequency distribution - Mean - Median -	
Mode - Comparison of measures of central tendency - Introduction to	
measures of dispersion - Sample - sampling - Normal curve - Sigma -	
Concept of six sigma - Principles - Process - Problems.	
Chapter: 4.2: Control Charts	8
Control chart – Types of control charts – Control chart for variables –	
Construction of X bar and R charts - control limits Vs specification limits -	
Process capability - Method of doing process capability Analysis -	
Measures of process capability - Problems.	
Attributes – Control charts - P chart – np chart – c chart – u chart –	
Construction of above diagrams - Problems - Comparison between	
variable chart and Attribute chart.	
V Capter 5.1: Lean Manufacturing Concepts	15
5S Concepts (SEIRI, SEITON, SEISO, SEIKETSU and SHITSUKE) -	
needs and objectives - effective implementation of 5S concepts in an	
organisation - Housekeeping - Kaizen - Kanban System.Bench marking	
- Objectives of bench marking – Types – Benchmarking process –	
Benefits of Bench marking - Pit falls of Benchmarking-Just In Time(JIT)	
concepts and its objectives - TotalProductive Maintenance(TPM) -	
Introduction, Objectives of TPM -steps in implementing TPM Overall	
Equipment Effectiveness(OEE)-Lean Six Sigma - Value Stream	
Mapping - DMAIC(Define, Measure, Analyse, Improve, Control) -	
DMADV (Define , Measure, Analyse, Design, Verify)	

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

Course Name	:	1020 Diploma in Mechanical Engineering
Subject Code	:	4020450
Semester	:	IV
Subject Title	:	Strength of Materials and Fluid Mechanics Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject Instructions		Examination				
4020450	Hours	Hours /	Marks			
Strength of Materials and Fluid Mechanics	/ Week	Semester	Internal Assessment	End Semester Examinations	Total	Duration
Practical	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Acquire skills on different types of testing methods of metals.
- Conduct material testing on elasticity, hardness, shear strength
- Determine modulus of rigidity of open coil spring and closed coil springs.
- Determine the co-efficient of discharge of venturimeter and mouth piece
- Determine the co-efficient of friction in pipes.
- Conduct performance test on reciprocating pump.
- Conduct performance test on impulse turbine.

4020450 STRENGTH OF MATERIALS AND FLUID MECHANICS PRACTICAL DETAILED SYLLABUS

Experiments:

PART A : Strength of Materials Laboratory

1. Test on Ductile Materials:

Finding Young's Modulus of Elasticity, yield points, percentage elongation and percentage reduction in area, stress strain diagram plotting, tests on mild steel.

2. Hardness Test:

Determination of Rockwell's Hardness Number for various materials likemild steel, high carbon steel, brass, copper and aluminium.

3. Torsion test:

Torsion test on mild steel - relation between torque and angle of twist-determination of shear modulus and shear stress.

4. Impact test:

Finding the resistance of materials to impact loads by Izod test and Charpytest.

5. Tests on springs of circular section:

Determination of modulus of rigidity, strain energy, shear stress and stiffness by load deflection method (Open or Closed coil spring)

6. Shear test:

Single or double shear test on M.S. bar to finding the resistance of material to shear load.

PART B: Fluid Mechanics Laboratory

1. Verify the Bernoulli's Theorem.

2. Determination of co-efficient of discharge of a mouth piece by variablehead method.

3. Determination of co-efficient of discharge of a venturimeter.

4. Determination of the friction factor in a pipe.

5. Performance test on reciprocating pump and to draw the characteristicscurves. Performance test on impulse turbine and to find out the Efficiency.

AUTONOMOUS EXAMINATION

Note:

- All the experiments in both sections have to be completed. Two experiments will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

Part-A	:	45 marks
Procedure / Observation	10	
Tabulation / Calculations	25	
Result / Graph	10	
Part-B	:	45 marks
Procedure / Observation	10	
Tabulation / Calculations	25	
Result / Graph	10	
Viva-voce	:	10 marks
Total	:	100 Marks

DETAILED ALLOCATION OF MARKS

LIST OF EQUIPMENTS: (For 30 students)

1.	UTM.01	
2.	Rockwell's Hardness Testing Machine.	01
3.	Torsion testing machine.	01
4.	Impact testing machine.	01
5.	Spring testing arrangements.	01
6.	Shear testing machine.	01
7.	Vernier calliper.	02
8.	The Bernoulli's Apparatus.	01
9.	An open tank fitted with an external mouth piece and a collecting tank with	
Pie	zometer.	01
10.	An arrangement to find friction factor of pipe.	01
11	. A reciprocating pump with an arrangement for collecting data to find out th	е
effi	ciency and plot the characteristics curves.	01
12.	A impulse turbine with an arrangement for calculating data to fin	nd out the
effi	ciency.	01
An dise	arrangement of Venturimeter fitted in horizontal water pipe line to find coeff charge.	icient of 01

TAMILNADU GOVERNMENT POLYTECHNIC COLLEGE, (Autonomous), MADURAI- 11 N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

Course Name	: 1020 Diploma in Mechanical EngineeringSubject Code :
	4020460
Semester	: IV
Subject Title	: Manufacturing Technology - II Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject Instructions		ons	Examination			
4020460	Hours	Hours /		Marks		
Manufacturing Technology - II	/ Week	Semester	Internal Assessment	End Semester Examinations	Total	Duration
Practical	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Identify a milling machine and its parts
- Identify a cylindrical grinder, surface grinder and tool and cutter grinder
- Identify shaper, Slotter and its parts
- Identify the tools and instruments used in milling.
- Study the components of the CNC machine and setting.
- Handle the different types of work holding devices
- Machine a component using different machine tools.
- Calculate the indexing for a work
- Machine a gear using milling machine.
- Machine a cutting tool using Tool and Cutter grinder.
- Machine a plug gauge using Cylindrical grinding machine.
- Machine components by shaping machine

- Machine components by slotting machine.
- Machine components by the CNC machines.

4020460 MANUFACTURING TECHNOLOGY - II PRACTICAL DETAILED SYLLABUS

EXERCISES:

Raw Material: M.S. / C.I

1. Make 'V' Block using shaping machine

┢		16		-
-	 -		-	2

	Dimensions							
SI.No	Part Name	Actual	Obtained					
		2						
		말						
-		a - 3						

2. Make dovetail using shaping machine

Dimensions							
SI.No	Part Name	Actual	Obtained				
	-						
	:	5					

3. Make groove cut using slotting machine

Dimensions						
SI.No	Part Name	Actual	Obtained			
	-					
	2	5 63				

4. Make round to hexagon in milling machine.

Dimensions						
SI.No	Part Name	Actual	Obtained			
		9				
	-	a				

5. Make Spur Gear using milling machine.

Dimensions						
SI.No	Part Name	Actual	Obtained			
		2				
	-					
	-	2				

6. Make Helical Gear using milling machine.

Dimensions						
SI.No	Part Name	Actual	Obtained			
		<u>;</u>				
		5				

7. Make slot cut using milling machine.

	Dimensions							
SI.No	Part Name	Actual	Obtained					
	:	2 2	2					
		8 8						
		1						
		1						

8. Make Progressive type Plug gauge using Cylindrical Grinding machine

Dimensions						
SI.No	Part Name	Actual	Obtained			
		2				
		9 23				
		0 <u>8</u>				

9. Make a turning tool using Tool and Cutter Grinder

Dimensions						
Sl.No	Part Name	Actual	Obtained			
		9				
	-	g				
	:	5				

10.Make plain surfaces (four surfaces)using surface Grinder

Dimensions					
Sl.No	Part Name	Actual	Obtained		
		3 98 			
	-	5			

11.Make the component in the CNC Turing Centre.

12.Make the component in the CNC Milling Centre.

AUTONOMOUS EXAMINATION

Note:

- All the exercises should be completed. Any one exercise will be given for examination.
- All the exercises should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

DETAILED ALLOCATION OF MARKS

Description	Marks
Procedure	10
Preparation of the Specimen	15
Setting and Machining	30
Dimensions	25
Finishing	10
Viva-voce	10
Total	100

LIST OF EQUIPMENTS (For 30 students)

1.	Vertical milling machine / Vertical attachment	-	2 Nos
2.	Universal Milling Machine	-	2 Nos.
3.	Surface Grinding Machine	-	1 No.
4.	Cylindrical Grinding Machine	-	1 No.
5.	Tool and Cutter Grinder	-	1 No.
6.	Shaping Machine	-	2 Nos.
7.	Slotting Machine	-	1 No.
8.	CNC Turning centre	-	1 No.
9.	CNC Milling Centre	-	1 No.
10	Tools and Measuring instruments	-	Sufficient quantity.
11	Consumables	-	Sufficient quantity.

N - 20 SCHEME

DIPLOMA IN MECHANICAL ENGINEERING

(Implemented from the Academic Year 2021 - 2022 onwards)

Course Name	:	1020 Diploma in Mechanical Engineering
Subject Code	:	4020470
Semester	:	IV
Subject Title	:	Electrical Drives and Control Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

Subject	Instructions		Examination			
4020460	Hours	Hours /		Marks		
Electrical Drives andControl	/ Week	Semester	Internal Assessment	End Semester Examinations	Total	Duration
Practical	4	64	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

OBJECTIVES:

- Identify starters for different motors.
- Study and prepare earthing
- Test the characteristics of DC and AC machines.
- Identify and select controlling elements.
- Explore the performance of ELCB, MCB.
- Design regulated power supplies.
- Identify display devices-LED, 7 segment LED, LCD.
- Identify the drive circuit for special motors. Test the speed control circuit of thespecial motors.

4020460 ELECTRICAL DRIVES AND CONTROL PRACTICAL EXPERIMENTS:

EXPERIMEN

Part A:

- 1. Verification of Ohm's Law
- 2. Load test on DC shunt motor
- 3. Load teston single phase induction motor
- 4. Load test on three phase squirrel cage motor
- 5. Testing of relays, contactors, push buttons and limit switch
- 6. Connection and Testing of MCB, ELCB

Part B

- 1. Construction and testing of Halfwave and Fullwave rectifier.
- 2. Construction and testing of IC voltage regulator using IC 7805.
- 3. Verification of truth tables for logic gates.
- 4. Verification of universal gates.
- Identification and testing of display devices LED, 7segment LED, Laserdiode.
- 6. Testing of Stepper motor drive.
- 7. Testing of Servomotor drive.

AUTONOMOUS EXAMINATION

Note:

- All the experiments in both sections have to be completed. Two experiments will be given for examination by selecting one from PART A and one from PART B.
- All the experiments should be given in the question paper and students are allowed to select by a lot or Question paper issued from the DOTE should be followed.
- All the students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical

examination.

* DETAILLED ALLOCATION OF MARKS

Part A:		45
Circuit diagram	10	
Connections & Readings	20	
Calculations & Graph	15	
Part B:		45
Circuit diagram	10	
Connections & Readings	20	
Execution	15	
Viva Voce		10
Total		100

LISTOF EQUIPMENTS (For 30 students)

Electrical Lab

1. DC ammeter 0-5A	-	1 no
2. DC ammeter 0-25A	-	1 no
3. DC voltmeter 0-30V	-	1 no
4. DC voltmeter 0-300V	-	1 no
5. Rheostat 10.8 ,8.5A	-	1 no
6. AC ammeter 0-5A	-	1 no
7. AC ammeter 0-10A	-	2 nos.
8. AC voltmeter 0-50V	-	3 nos
9. ACwattmeter 5A-10A	-	3 nos
(0-750W,0-600V)		
10. Loading rheostat 5A,230V	-	1 no
11. Tachometer 0-1000rpm	-	1 no
(Analog type)		
12. Variac 20A,250V	-	2 nos
(Auto transformer)		
13. Over load relay1 to 2.5A	-	1 no
14. Air breakcontactors 20A,220V	-	4 nos

16. Limit switch 20A,220V - 1	no
17. MCB 20A single pole - 1	no
18. MCB 20A double pole - 1	no
19. ELCB 2pole 20A,100mA - 1	no
20. ELCB 4POLE 20A,100mA - 1	no